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Ethics in NLP - Bias

What is Bias?

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.



Ethics in NLP - Bias

Consequences of Sociodemographic Bias in NLP Models:

e Outcome Disparity: Predicted distribution given A,
are dissimilar from ideal distribution given A

e Error Disparity: Predicts less accurate for authors of given demographics.

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In
ACL-2020: Proceedings of the Association for Computational Linguistics.
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Our data and models are (human) biased.

“Outcome Disparity”

Person-level
s attribute = 1
= attribute = 2
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Outcome Disparity
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Disparities
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Origins of Bias
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WSJ Effect

Correlates with demographics

Jagrgensen et al. (WNUT 2015)
Hovy & Seggard (ACL 2015)
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Label Bias - Example: Label word with drawing
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Overamplification
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Zhao et al. (ACL 2015)

@ Overamplifiction - Model Amplifies Bias

BIAS = 0.66 BIAS = 0.84




Overamplification
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Semantic Bias
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E.g. Coreference resolution:
connecting entities to references (i.e. pronouns).

“The doctor told Mary that she had run some blood tests.”

e
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Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In

ACL-2020: Proceedings of the Association for Computational Linguistics.




Predictive Bias Framework for NLP
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Summary of Countermeasures

Source Origin Countermeasures

o
anl.lon
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data.%ction Selection Bias Post-stratification or
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m@ls Overampilification distributions, add outcome
disparity to cost function

Use above techniques and

dd' N
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Mitigating Bias in LLMs - "Alignment”

® Most of bias mitigation is via RLHF (Reinforcement Learning from Human Feedback).

Updating weights to favor responses judged positively.

® Also introduces "guard rails"
— safety limits to restrict Al behavior.

e Ethical dilemma: Annotators exposure to distressing content.

e Additional risk: Manipulating guard rails

(chapter 2)



Bias - Takeaways

Bias, as outcome and error disparities, can result from many origins:
e the embedding model

® the feature sample

e the fitting process

e the outcome sample

Our understanding is evolving:
This is an active area of work, both theoretically and technically!
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m Information targeting: “You are being shown this ad because ...”
o Do not share / secure storage



Ethics in NLP

Privacy P
e Risk Categories: { \
o Revealing unintended private information Q‘{\‘

o Targeted persuasion
e Mitigation strategies:
o Anonymize where possible — remove named entities
o Informed consent -- let participants know and opportunity to opt-in/-out
m Information targeting: “You are being shown this ad because ...”
o Do not share / secure storage
o Federated learning -- obfuscate to the point of preserving privacy
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Ethics in NLP Research

ACM Code of Ethics; General Ethical Principles:

e Contribute to society and to human well-being, acknowledging that all people are stakeholders
in computing.

https://www.acm.org/code-of-ethics
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Ethics in NLP Research

ACM Code of Ethics; General Ethical Principles:

e Contribute to society and to human well-being, acknowledging that all people are stakeholders
in computing.

e Avoid harm.

https://www.acm.org/code-of-ethics
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Ethics in NLP Research

ACM Code of Ethics; General Ethical Principles:

e Contribute to society and to human well-being, acknowledging that all people are stakeholders
in computing.

e Avoid harm.

e Be honest and trustworthy.

https://www.acm.org/code-of-ethics
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Ethics in NLP Research

ACM Code of Ethics; General Ethical Principles:

e Contribute to society and to human well-being, acknowledging that all people are stakeholders
in computing.

e Avoid harm.
e Be honest and trustworthy.

e Be fair and take action not to discriminate.

https://www.acm.org/code-of-ethics
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Ethics in NLP Research

ACM Code of Ethics; General Ethical Principles:

e Contribute to society and to human well-being, acknowledging that all people are stakeholders
in computing.

e Avoid harm.
e Be honest and trustworthy.
e Be fair and take action not to discriminate.

e Respect the work required to produce new ideas, inventions, creative works, and computing
artifacts.

https://www.acm.org/code-of-ethics
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Ethics in NLP Research

ACM Code of Ethics; General Ethical Principles:

e Contribute to society and to human well-being, acknowledging that all people are stakeholders
in computing.

e Avoid harm.
e Be honest and trustworthy.
e Be fair and take action not to discriminate.

e Respect the work required to produce new ideas, inventions, creative works, and computing
artifacts.

e Respect privacy.

e Honor confidentiality.

https://www.acm.org/code-of-ethics
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Ethics in NLP

Human Subjects Research

Observational versus Interventional

(The Belmont Report, 1979)

(i) Distinction of research from practice.

(i) Risk-Benefit criteria

(iii) Appropriate selection of human subjects for participation in research
(iv) Informed consent in various research settings.
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Ethics in NLP

Human Subjects Research

Observational versus Interventional
(modeling) (models interact)

Deploying a model within an application often shifts the works from being simply
observational (privacy harms) to interventional (consideration for additional harms).



Ethics in NLP

Bias — Consider target application and population.

Alignment - LLM based Safety and Bias Mitigation

Privacy - Secure, do not share, and inform

Ethical Research and Development



