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Ethics in NLP - Bias

What is Bias?

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In 
ACL-2020: Proceedings of the Association for Computational Linguistics.



Ethics in NLP - Bias

Consequences of Sociodemographic Bias in NLP Models:

● Outcome Disparity:  Predicted distribution given A,
 are dissimilar from ideal distribution given A

● Error Disparity: Predicts less accurate for authors of given demographics.

Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In 
ACL-2020: Proceedings of the Association for Computational Linguistics.
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Label Bias - Example: Label word with drawing
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Devin Coldeway. 2017. TechCrunch: Google releases millions of bad drawings for you (and your AI) to paw through 
https://techcrunch.com/2017/08/25/google-releases-millions-of-bad-drawings-for-you-and-your-ai-to-paw-through/
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Overamplifiction - Model Amplifies Bias
Zhao et al. (ACL 2015)
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Semantic Bias 
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semantic bias
Non-ideal associations between attributed 
lexeme (e.g. gendered pronouns) and 
non-attributed lexeme (e.g. occupation). 
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themselves are not representative 
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Shah, D., Schwartz, H. A., Hovy, D. (2020). Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview. In 
ACL-2020: Proceedings of the Association for Computational Linguistics.

E.g. Coreference resolution: 
connecting entities to references (i.e. pronouns). 

“The doctor told Mary that she had run some blood tests.”



Predictive Bias Framework for NLP 
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Source Origin Countermeasures

Label Bias Post-stratification, Re-train 
annotators

data selection Selection Bias
Stratified sampling, 
Post-stratification or 

Re-weighing techniques

Overamplification
Synthetically match 

distributions, add outcome 
disparity to cost function

Semantic Bias Use above techniques and 
re-train embeddings

Summary of Countermeasures

annotation

models

embeddings



Mitigating Bias in LLMs - "Alignment" 

● Most of bias mitigation is via RLHF (Reinforcement Learning from Human Feedback).

Updating weights to favor responses judged positively. 

● Also introduces "guard rails" 

– safety limits to restrict AI behavior. 

● Ethical dilemma: Annotators exposure to distressing content. 

● Additional risk: Manipulating guard rails

(chapter 2)



Bias - Takeaways

Bias, as outcome and error disparities, can result from many origins:
● the embedding model
● the feature sample 
● the fitting process
● the outcome sample

Our understanding is evolving: 
     This is an active area of work, both theoretically and technically! 
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Ethics in NLP

Privacy

● Risk Categories: 
○ Revealing unintended private information 
○ Targeted persuasion

● Mitigation strategies:
○ Anonymize where possible – remove named entities
○ Informed consent -- let participants know and opportunity to opt-in/-out

■ Information targeting: “You are being shown this ad because …”
○ Do not share / secure storage
○ Federated learning -- obfuscate to the point of preserving privacy
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Ethics in NLP Research

ACM Code of Ethics; General Ethical Principles:
● Contribute to society and to human well-being, acknowledging that all people are stakeholders 

in computing.

https://www.acm.org/code-of-ethics
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Ethics in NLP Research

ACM Code of Ethics; General Ethical Principles:
● Contribute to society and to human well-being, acknowledging that all people are stakeholders 

in computing.

● Avoid harm.

● Be honest and trustworthy.

● Be fair and take action not to discriminate.

● Respect the work required to produce new ideas, inventions, creative works, and computing 
artifacts.

● Respect privacy.

● Honor confidentiality.

https://www.acm.org/code-of-ethics

https://www.acm.org/code-of-ethics
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Ethics in NLP

Human Subjects Research

Observational versus Interventional

(The Belmont Report,  1979)

 (i) Distinction of research from practice. 
(ii) Risk-Benefit criteria 
(iii) Appropriate selection of human subjects for participation in research 
(iv) Informed consent in various research settings.
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Ethics in NLP

Human Subjects Research

Observational versus Interventional
(modeling) (models interact)

Deploying a model within an application often shifts the works from being simply 
observational (privacy harms) to interventional (consideration for additional harms). 



Ethics in NLP

Bias – Consider target application and population. 

Alignment - LLM based Safety and Bias Mitigation

Privacy - Secure, do not share, and inform

Ethical Research and Development


